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ABSTRACT:  Many aspects of CGF tasks have highly reactive aspects to them (e.g., observing and responding to
multiple simultaneous information sources while piloting an airplane).  Also, reactivity can be a critical aspect of
performance when there are many individual agents being controlled.  This reactivity, however, must be combined with
"higher-level" cognitive activities like planning and strategy assessment.  Finally, reactivity and planning activities
must coexist in a single system that interacts realistically with the environment. This preliminary work presents an
initial examination of reactivity in SAMUEL agents and humans.

1.  Introduction

To be effective training tools, Computer Generated
Forces (CGF) must exhibit cognitively plausible
behaviors.  In addition, they should not appear to be
overly predictable and instead should exhibit
adaptability in their behavior, much like a pilot would.
This adaptability, of course, must not go beyond the
bounds of realism.

The overall purpose of our research is to add learning
and adaptation mechanisms to our CGF models.  Our
general approach is to combine reactive behavioral
models with cognitive models. The cognitive models
allow realistic behavior; the reactive behaviors allow
us to adapt lower-level behaviors to achieve
adaptability.

This paper, which reports our initial work, describes a
pilot study which was designed to help determine the
bounds and experimental setup for the  rest of our
research.  These initial studies give interesting insights
in several areas.

2. Behavior Representations: Low-Level
Reactivity and High-Level Cognition

How should Computer Generated Forces (CGF) be
controlled?  Many aspects of CGF tasks have highly
reactive aspects to them (e.g., observing and
responding to multiple simultaneous information
sources while piloting an airplane).  Also, reactivity
can be a critical aspect of performance when there are
many individuals agents being controlled.  This
reactivity, however, must be combined with "higher-
level" cognitive activities like planning and strategy
assessment.  Additionally, reactivity and planning
activities must coexist in a single system that interacts
realistically with the environment.  In this paper, we
explore how a reactive system and how people deal
with different levels of reactivity.  In a later part of this
project, we will explore how a cognitive architecture
(ACT-R) is able to deal with both reactivity and higher
level cognitive aspects of a task.

Our reactive system, Samuel, uses stimulus-response
(S-R) rules to implement behaviors [1].  The Samuel
system's S-R rule representation is derived from
behaviorist tradition.  For example, Samuel's S-R rules
do not use cognitive representation at all: there is no
representation of goals, schema, memory structures,



etc. The condition side of Samuel's rules match to the
environment (or sensors), and the action side of
Samuel's rules attempt to change the state of the world
through actions.  Samuel's strength lies in it's ability to
learn relatively simple condition-action rules to solve
complex tasks using evolutionary algorithms and other
learning methods.  In addition, Samuel allows for
parallel execution of sets of these S-R rules, thereby
making possible the implementation of different
behaviors.

Evolutionary algorithm-based reinforcement learning
systems [2] like Samuel are good at learning reactive
strategies for sequential decision problems, but cannot
take advantage of the higher level information that
facilitates cognition, while cognitive models allow
good representations of high level planning tasks, but
are not typically as good at reactive skill learning.  Our
hypothesis is that an integration of these two
approaches will create a system that combines the best
of both reactivity and high-level cognition (e.g.
planning), with learning at both the reactive level and
at the cognitive level.

Why separate the cognitive from the reactive
component?  We wish to understand the interaction
between the reactive and cognitive components.  With
two distinct models, we are able to more precisely
measure the contribution of each to the total ability of
the system.  Also, learning at the reactive and cognitive
levels may be quite different, and implementation of
the learning system is simplified with separate models.

To investigate these issues we have created a
distributed Micro Air Vehicle (MAVs) task.  In the
MAV task, groups of MAVs cooperate to perform
reconnaissance. In this research, we assume each
vehicle can detect certain ground features below the
vehicle, and can detect obstacles, including other
MAVs, within a defined range.  As a group, the MAVs
need to maximize the information gain, concentrating
on areas of more importance, and minimizing
duplication of effort. In previous work, we successfully
used genetic algorithms (GAs) to evolve MAV control
rule sets that could accomplish the above surveillance
task [3].

This work presents an initial examination of reactivity
in Samuel agents and humans.  Our premise is that
people will be sensitive to additional reactivity
constraints, while Samuel agents will be less sensitive.

Our reactivity manipulation was extremely simple:
The number of MAVs that needed to be controlled.
Future experiments will investigate more sophisticated
aspects of reactivity including the speed and

maneuverability of the MAVs, and the speed and
number of dynamic objects on the ground.

We will first describe the basic experiment as well as a
pilot test of human performance.  We will show how
human participants do seem to be sensitive to an
increased level of reactivity.

3.  Related Work

Other cognitive models support reactive or
perceptual/motor components. Soar can support
reactive models ([4], [5]); however a fixed decision
cycle is not guaranteed. In Samuel, a defined, fixed
decision cycle time is guaranteed, and a decision will
be given each decision step.  ACT-R/PM [6] adds a
perceptual motor component to ACT-R ([7]).
However, it does not give us the separation of
components that allows for measuring the
contributions of the reactive component. ACT-R/PM is
an integrated cognitive architecture that allows low
level perceptual and motor activities to be used and
controlled by full-scale productions.  ACT-R/PM has
an excellent integrated approach, but because we are
specifically interested in reactive behavior, we have
decided to explore the reactive and high level cognitive
aspects in different ways.

4.  Human Controller Experiments
 
 4.1 Participants

Five researchers from the U.S. Naval Research
Laboratory (NRL) served as participants in this pilot
study.  Their education ranged from college graduate
to Ph.D.

 4.2  Simulation

The Micro Air Vehicle Simulator (MAVSIM) includes
a simple 2D model of the MAV’s motion, sensors, and
the environment.  The motion model allows for
calculating the agent’s position at any time step given
translation and turning rates.  The sensors currently
modeled include a range sensor, whose output is a
floating point value representing distance to the nearest
obstacle or fellow MAV, and a “vision” sensor, which
provides the information about the ground features
beneath the vehicle. The vision sensor determines the
interest level of features within this area, and returns
both the value of the highest interest area within the
sensor area and a direction to that highest valued area.
The MAV’s environment consists of static as well as
dynamic regions of varied interest which model real
world features such as roads, buildings, ground



vehicles, etc., although in this study we only consider
static features.

4.3  Test Environments

Ten different environments of varied complexity were
created for this pilot study.  The MAVs’ flight zone for
all the environments was restricted to an 800 x 800
unit area.  Objects on the ground can be classified as to
their level of “interest”  with a value between 0 (no
interest) and 10 (highly interesting). In the less
complex environments, a set of five predefined regions
of interest varying from 3 to 9 were randomly

positioned throughout the area to simulate the building
structures in the flight zone.  The more complex
environments included the set of five regions described
above as well as two additional regions of interest
between 3 and 9, and a predefined complex shape of
value 2, which simulated roads in the flight zone.
Only the orientation and location of the regions
changed, not their size or shape.  At the beginning of
each simulation run, all the MAVs were hovering on
the left edge of the flight zone.  Figures 4.1 and 4.2
show examples of simple and complex environments,
respectively.  Participants could judge the level of
interest in the objects by their color, which ranged
from a pale yellow to a bright red.  The amount of red
indicated the level of interest, with bright red areas
mapping to an interest level of 10.

4.4  Scoring an Episode

The participants were told to maximize their score,
which was determined as follows. Each MAV’s
instantaneous value is equal to the sensed area
weighted by the interest of the visible regions within

the sensor. If the sensor only partially covered an area
on interest, it would a lower value than if it sat
completely over the area of interest.  The average score
is the total value of all sensors averaged over time.
Note that an area of interest could not be accumulated
by more than one MAV in the same instant of time, i.e.
only one MAV could get credit if two or more sensors
overlapped on some portion of an area of interest.  The
participants, in addition to the average score, were also
given a metric of the instantaneous total of all sensors.
They could use this to make decisions about their
current positioning of the MAVs.

4.5  Human Control of the Vehicles

MAVs were controlled by mouse manipulation.   In
order to move a MAV to a particular location, the
participant left-clicked on the MAV, and then dragged
it to the desired location.  When the MAV arrived at
the location, it hovered over that area.  A MAV could
also be directed by clicking on the rightmost mouse
button.  In this case, the MAV would continue in the
direction defined by the mouse gesture until it left the
flight zone at which time it could no longer be
controlled.  MAVs could be permanently destroyed in
two different ways: they could leave the flight zone
(i.e., fly off the screen), or two or more MAVs could
collide, destroying all MAVs involved in the collision.
All MAVs moved continuously.  When the simulator
first started, all MAVs were set to orbit on the far left
side of the screen.

The world began with no objects being visible to the
participants As a MAV flew around, the world

Figure 4.2 MAVSIM showing a more
complex environment.  The rectangles are
"buidlings” and the lightest colored bar is a
"road" (though nothing traveled on the road
during these experiments) and the circles are
MAVs.  The original display is in color.

Figure 4.1  MAVSIM showing an
environment of lower complexity.  The
rectangles are "buildings" and the circles
are MAVs.  The original display is in color.



underneath it became visible.  Thus, a MAV flying
over something like a building would see the object
appear underneath it.

4.6  Design

Participants were tested on a sample of six
environments chosen randomly for each participant
from the set of all possible environments as described
previously.  We manipulated reactivity by increasing
the number of MAVs the participant had to control.  In
the Low Reactivity condition, participants had to
control three MAVs at once.  In the High Reactivity
condition, participants had to control ten MAVs at
once.

4.7  Measures

We examined three total measures:  the total score (as
described above), the number of control strokes per
MAV, and the average score of a single MAV.  Total
score will allow us to examine how participants
performed overall.  The number of commands per
MAV was calculated as the total number of commands
via mouse-clicks issued to each MAV divided by the
number of MAVs.  The average score of each MAV
was calculated as the sum of the average scores of each
MAV over time divided by the total number of MAVs.
The latter two measures will allow us to measure
reactivity.

We also collected protocol data [8] which will not be
discussed in this report.

 4.8  Procedure

Participants were given a short description of the task,
the general makeup of the environments, and were
instructed on how to control the MAVs.  They then
practiced on a training session that lasted from 5-10
minutes.  Following the training session, the
participants went through six simulation sessions
lasting five minutes each during which data was
collected.

4.9  Results

We first determined if the difference in complexity of
the environments had any effect on the participants'
scores. The complexity of the worlds did not seem to
play a major role in the scores, F(1,4) = 3.0,
MSE=211053, p > .10.  For all later analyses, we will
collapse across this variable.  Also, participants did not
crash many MAVs.  Excluding participant 2 (the
outlier), only 2 MAVs were lost throughout the

session.  Thus, participants seemed able to use and
control their MAVs with reasonable success.

Next, we analyzed overall score and performance of
each participant.  As Figure 3 shows, when participants
controlled more MAVs, they scored much better than
when they controlled fewer MAVs, F(1,4) = 24.2,
MSE=3980359, p < .005. This finding makes a great
deal of sense:  the more MAVs the user had, the
greater the amount of interesting areas which could be
monitored by MAVs increased, and thus the bigger the
possible (and actual) score.

As Figure 4.3 shows, there is an obvious outlier in the
pilot data.  Since we will be examining within subject
effects, we kept this participant in the dataset, though
removing this outlier does not change the pattern or
significance of any of the reported results.

Next, we wanted to examine reactivity of the
participants.  Two obvious variables to examine were
the number of commands issued to each MAV and
each MAV's score.  As described above, participants
were able to control their MAVs and increase their
total score with more MAVs. But how did the average
of the MAV's scores change in a more reactive
environment?

Participants in the Low Reactivity condition issued
many more commands to the individual MAVs than
they did in the High Reactivity condition. As Figure
4.4 suggests, this effect is robust, even with the small
number of participants, F(1,4)=44.5, MSE=36.9, p <
.001. Thus, when participants had to control more
MAVs, they issued fewer commands to each MAV
than when they needed to control fewer MAVs.

As Figure 4.5 shows, when participants were in the
Low Reactivity condition, they had a higher average

Figure 4.3  The scores for each participant
across trials in this experiment.  Each line is a
different participant.



score for each MAV than when they were in the High
Reactivity condition, F(1,4)=87.4, MSE=2404, p <
.001.

4.10  Discussion

Participants were able to obtain a higher score when
they had access to more MAVs.  However, more
MAVs came at an increased reactivity cost: fewer
commands given and a lower score for each MAV.
There are, however, explanations other than an
increase in reactivity to explain these findings.  It

could be, for example, the MAVs in the low reactivity
condition had to explore more of the area, and this
additional exploration required more commands.  Also,
the difference in the scores could be accounted for by
assuming in the Low reactivity condition each MAV
was able to "fit" on a building by itself, while in the

High reactivity condition, MAVs had to either double
up, (which reduced the score because only one MAV
would get credit for a single feature at the same time),
or be satisfied with a lower interest region. These
issues will be explored in a later experiment.

5.  SAMUEL Experiment

SAMUEL is a machine learning system that uses
evolutionary algorithms (GAs), reinforcement
learning, and Lamarckian learning to solve sequential
decision problems.  The Lamarckian operators (e.g.
specialization and generalization) modify decision
rules based on observed interaction with the task
environment.  SAMUEL is designed for problems in
which feedback is delayed (payoff occurs only at the
end of an episode that spans many decision steps).
This learning system has been previously used to learn
behaviors such as navigation and collision avoidance
for an autonomous underwater vehicle [9], shepherding
[10], and tracking and herding for mobile robots.  The
original system implementation is described in detail in
[1].

SAMUEL implements behaviors as a collection of
stimulus-response rules.  Each stimulus-response rule
consists of conditions that match against the current
sensors of the autonomous vehicle, and an action that
defines action to be performed by it.  An example of a
rule might be:

RULE 4
    IF   range2 > 25
          AND  range5 > 0
          AND  camera1_interest > 1
      THEN SET turn = 45
This rule should be interpreted as follows:  if the
MAV’s range sensor 2 is returning a value greater than
25 units, the range sensor 5 is sensing something, and
the MAV is over a region of interest, the MAV should
turn 45 degrees.  Each rule has an associated strength
with it as well as number of other statistics.  During
each decision cycle, all the rules that match the current
state are identified.  Conflicts are resolved in favor of
rules with higher strength.  Rule strength is updated
based on the reward received after each training
episode.

5.1 Experimental Design

This section describes the methodology used for
learning experiments performed to evolve a stimulus-
response rule-based controller for the MAVs for the
task of multi-agent large-area surveillance.

The MAVSIM as described above was used to model
the MAVs, their sensors, and the environment.  Each

Figure 4.4  The average number of commands
given to each MAV in the Low and High
reactivity conditions.

Figure 4.5  Average score per MAV for low
and high reactivity conditions for human
controllers.



MAV (radius of 15.0 units) was equipped with a
“vision” sensor, which returned the highest interest
value within sensing range (0.0 – 30.0 in 5.0 units
increments) as well as the bearing (angle relative to
heading between –180.0 and 180.0 degrees in 10-
degree increments) to the biggest visible area of that
interest.  Each agent was also equipped with 8 range
sensors with a 45-degree beam width and range
between 0.0 and 50.0 units in 5.0-unit increments.
Agents moved with a constant speed of 5.0 units per
decision cycle.  In order to control the MAV, the turn
rate value between –180.0 and 180.0 degrees in 45-
degree increments is specified for each decision cycle.
The number of MAV agents and their configurations
were held constant throughout the experiments.  All
the MAVs were controlled using the same behavior
which was currently being evaluated by SAMUEL.

For each simulation run (an episode), a constant
number of predefined regions were randomly placed
with a random orientation in the environment.  The
predefined features were only a subset of features used
for implementing environments described earlier for
human experiments, and included an 80x80 region of
interest 4.0, a 100x60 region of interest 9.0, and a
50x270 region of interest 2.0.  In addition, the size of
the environment was reduced to 270.0 x 270.0 (about
1/3 of the original size).  For these experiments, on the
beginning of each trial, a group of four MAVs was
placed in the same position and orientation on the left-
most edge of the world.  In order to confine the MAVs
to the flight zone, a perimeter was placed around it.
The perimeter was visible to the range sensor and
permanently disabled the MAV, which crossed it.

Each learning evaluation consisted of a maximum of
150 decision cycles at the end of which the behavior
was evaluated.  If a MAV collided with an obstacle or
a fellow MAV the episode terminated immediately.
The fitness function used in this study is defined as a
weight based on the region’s interest, sum of the
regions surveyed by the group of MAVs over time.
The value is normalized as a percentage of maximum
possible payoff which is calculated as the weighted
sum of the highest interest areas equal to the total area
covered by the MAVs’ sensor, which for the
environments used during learning was equal to 3009.
SAMUEL’s condition values included range0 - range7
representing MAV’s range sensor readings,
camera1_interest, which stored the highest interest
value currently within sensing range of the “vision”
sensor, and camera1_direction, which represented the
bearing to the area of the highest value.   The turn_rate
action attribute, which specified the MAV’s turning
angle per decision cycle, was the only action attribute
in the system.

The learning experiment was allowed to run for 100
generations with a population of 100 rulebases.  For
each single evaluation 40 runs of the simulator were
performed in order to provide the learning system with
statistics about rulebase’s performance for Lamarckian
learning, rule strength updates, as well as the genetic
algorithm.  The system was initialized with a set of
rules, which implemented an environment independent
random walk.

After learning, the best rule set was tested on the
superset of the predefined environments, the human
controllers used.  For each of the ten possible
environments, an average score and number of lost
MAVs was obtained by running ten independent
simulations during which SAMUEL controlled a group
of MAVs.  The performance was evaluated with
groups of both three and ten MAVs giving us a total of
20 data points.  The averages were also calculated for
each of the reactivity conditions by averaging the
average scores and MAVs collision statistics across the
number of environments in each reactivity condition.
Finally, the average score per MAV was then
calculated by dividing the average score for each
reactivity condition across all the environments by the
number of MAVs in the group.

5.2  Results

Every generation, the best ruleset (based on average
performance measure) was evaluated 100 times in
different randomly generated environments.  The
values of these evaluation are plotted in Figure 5.1.  As
seen in this figure, the performance of the best
behavior was about ~55% which shows a significant
performance improvement from the initial behavior.
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Figure 5.1  Average performance (over 100
trials) of the best individuals throughout
generations tested in learning environment
(solid black line).



The same metrics as in the experiments with human
controllers were used to evaluate the SAMUEL’s
performance. The average number of commands per
MAV, which for SAMUEL is defined by the number
of decisions cycles, is independent of environment
conditions and was held constant at 150.  SAMUEL, as
Figure 5.2 shows, scored higher when the number of

controlled MAVs was higher.  This result is consistent
with how the human controllers performed.  Thus,
SAMUEL was able to score better when it had more
MAVs to control, F(1,18)=166.9, MSE=134116, p <
.001.

Recall that our hypothesis was that people would have
problems with increased levels of reactivity and that
SAMUEL would not.  Interestingly, SAMUEL was
able to deal with an increased level of reactivity in
some ways, but had problems with more reactivity in
others.

SAMUEL seemed to have difficulty with an increase
in reactivity, as shown by the increase in number of

crashes that SAMUEL had.  SAMUEL lost more
MAVs in the High reactivity condition than in the Low
reactivity condition (.42 vs. 0), F(1,16)=14.2,
MSE=.062, p < .005.  It should be noted, however, that
while this difference is statistically significant, it is a
very small effect.

Did SAMUEL show a difference in reactivity as
determined by the individual scores of the MAVs?  As
Figure 5.3 shows, there was no difference in the
average score of the MAVs, F(1,16)< 1, MSE=3170.
This finding shows that SAMUEL is able to score the
same amount on average with its MAVs, whether it is
controlling only 3 MAVs or 10, even though it lost
more MAVs due to crashes when it had to control 10
MAVs at once.

5.3  Discussion

Our hypothesis was that SAMUEL would deal better
with increased levels of reactivity, while the human
participants would pay a performance price with
increased reactivity. The data collected for this study
as presented in Sections 4.9 and 5.3, partially supports
this hypothesis.  In this section, the possible reasons
for this outcome are discussed in this section.

The computational complexities of the MAVSIM as
well as the internal characteristics of the SAMUEL
forced us to design simpler and smaller learning
environments, decrease the number of the MAVs in a
group, and decrease the mission time by a factor of 8
as discussed in Section 5.2.  This could have had
adverse effects on the performance of evolved
behaviors such as lower reactive abilities due to
limited practice.  Thus, when it was expected to
maneuver with many more MAVs (the experimental
environments), it had more crashes.

SAMUEL’s performance of the task could have been
also adversely affected by the MAVs’ sensors (Section
5.2).  The information given to SAMUEL was a
fraction of information observable by the human
controller.  SAMUEL was given limited range
information and even more limited information as to
the interest and direction of the regions below the
MAVs.  It was not given any temporal information
such as previously seen regions or any information
about the MAVs’ current states.  All of that could have
lead to a much harder problem than initially expected.

For the learning experiments discussed here
SAMUEL’s initial population was seeded with a
ruleset of several rules, which implemented a random
walk behavior.  There are many different (although not
necessarily better or worse) ways of initializing the

Figure 5.2  Average score (over 10 trials) for
each environment for low (1-10) and high
(11-20) reactivity levels.
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Figure 5.3  Average score per MAV for Low
and High rectivity conditions.
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population for this specific task.  It is possible that a
more domain specific initial behavior would have
resulted in a better final behavior.

6.  Conclusions

We have presented a pilot experiment that showed that
people seem to be sensitive to increases in reactivity.
We also showed that a genetic algorithm based system
also was minimally sensitive to increases in reactivity.

The only way that SAMUEL showed sensitivity to an
increase in reactivity was through a small increase in
the number of crashes.  This increase in number of
MAV crashes was so small that it did not seem to
affect the average score in the task.  Further, the non-
difference in average score casts doubt on one of the
possibilities offered for the reactivity difference found
in the human experiment.  We suggested that one
possibility for the different reactivity scores of the
human participants was that the MAVs had to "double
up" in the more reactive condition and not in the less
reactive condition.  Because SAMUEL did not show
this difference, it suggests that SAMUEL was simply
better at controlling the MAVs in a more reactive
environment.

We should note that, in general, the human
participant's score was rather better than SAMUEL's.
We find this quite interesting and are exploring ways
of increasing SAMUEL's behavior to increase its
score.

In some ways, people's sensitivity to reactivity is
surprising because we did not increase the reactivity by
very much.  In future experiments we plan on
increasing the reactive aspects of this task much more.

These two experiments suggest that people are
sensitive to differing levels of reactivity, while genetic
algorithms are much less sensitive.  This sensitivity in
both cases needs to be explored more, but we can
tentatively suggest that a genetic algorithm may be
able to assist or take over aspects of increasing
reactivity in computer generated forces paradigms.
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